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While the term neuroinflammation often conjures up images of cellular damage, mounting evidence suggests that certain
proinflammatory molecules, such as the cytokine IL-1β, may have beneficial and protective effects. In a report in this
issue of the JCI, Shaftel and coworkers have generated an elegant mouse model in which local hippocampal
overexpression of IL-1β in an Alzheimer disease (AD) transgenic mouse model resulted not in the expected exacerbation
of the amyloid β plaque deposition common to AD, but instead in plaque amelioration (see the related article beginning on
page 1595). Thus, manipulation of the immune system may be a potential therapeutic approach to protect against AD,
although further studies are needed to understand all of the downstream effects of this manipulation.
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While the term neuroinflammation often conjures up images of cellular dam-
age, mounting evidence suggests that certain proinflammatory molecules, 
such as the cytokine IL-1β, may have beneficial and protective effects. In 
a report in this issue of the JCI, Shaftel and coworkers have generated an 
elegant mouse model in which local hippocampal overexpression of IL-1β 
in an Alzheimer disease (AD) transgenic mouse model resulted not in the 
expected exacerbation of the amyloid β plaque deposition common to AD, 
but instead in plaque amelioration (see the related article beginning on page 
1595). Thus, manipulation of the immune system may be a potential thera-
peutic approach to protect against AD, although further studies are needed 
to understand all of the downstream effects of this manipulation.
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activation transgene.
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The role of neuroinflammation in Alzheim-
er disease (AD) remains somewhat of a mys-
tery. Although inflammatory proteins such 
as cytokines, chemokines, complement, 
and acute phase proteins are elevated in AD 

brain, the status of each as a “good guy” 
or a “bad guy” is still unclear (1). On one 
hand, inflammation may be a secondary 
response to progressive neurodegeneration 
in the brain. In this instance, immune cells 
in the brain, such as microglia and astro-
cytes, may become activated and secrete 
inflammatory molecules that may then 
further accelerate pathogenesis (2). On 
the other hand, recent evidence points to a 
potentially beneficial and protective role of 
inflammation in the brain (3). In this case, 
inflammation appears to induce microgli-
al phagocytosis of amyloid β (Aβ) protein, 
reducing its deposition into plaques. Aβ 
protein is proteolytically cleaved from its 
large precursor, amyloid precursor protein 
(APP), and secreted; in AD, Ab accumulates 

extracellularly into plaques, a hallmark 
pathological feature of the disease (4).

In a study reported in this issue of the 
JCI, Shaftel and coworkers present provoca-
tive new findings in support of the latter 
scenario (5). The authors overexpressed 
the proinf lammatory cytokine IL-1β 
(IL-1β) in a region- and time-dependent 
fashion in transgenic mice overexpress-
ing human mutant APP and presenilin 1 
(APP/PS1 mice), a mouse model designed 
to partially mimic AD pathology in which 
extracellular Aβ plaques accumulate in 
the brain with aging. Excisional activa-
tion transgene (XAT) technology was used 
to first generate IL-1βXAT transgenic mice 
(5). Upon injection of feline immunodefi-
ciency virus–Cre (FIV-Cre) to locally acti-
vate the IL-1β transgene in brain, these 
mice were shown to have elevated levels 
of IL-1β and glial fibrillary acid protein 
(GFAP), indicative of astrocytic activation, 
as well as of ionized calcium-binding adap-
tor molecule 1 (Iba-1) and MHC class II, 
indicative of microglial activation. Expres-
sion of the transgene was still apparent  
1 year after injection. These mice were 
then crossbred with APP/PS1 mice, and 
the resulting mice expressing the APP/PS1 
and IL-1bXAT transgenes (APP/PS1+IL-b 
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mice) were injected with FIV-Cre to induce 
IL-1β overexpression specifically in the 
hippocampus at 6 months of age, during 
early Aβ plaque deposition (Figure 1). To 
the authors’ surprise, instead of observ-
ing a worsening of AD-like pathogenesis  
4 weeks after injection as expected, the 
opposite effect occurred. IL-1β overexpres-
sion in the APP/PS1+IL-1β mouse hippo-
campus caused reduced Aβ plaque deposi-
tion and lower insoluble Aβ levels in the 
injected ipsilateral hippocampus compared 
with the control-injected contralateral hip-
pocampus in individual mice. The injected 
hippocampi also had fewer Aβ deposits 
than those found in age-matched APP/
PS1 mice. No changes were observed in 
the levels of APP or β-secretase, the lat-
ter being one of the enzymes responsible 
for cleaving Aβ from APP, which suggests 
that the reduction in plaque burden was 
not the result of a decline in Aβ produc-
tion. Instead, the focal overexpression of 
IL-1β led to a large increase in astrocytic 

activation (reflected by increased levels of 
GFAP) and microglial activation (reflected 
by increased levels of microglial markers 
Iba-1 and MHC class II) in the injected hip-
pocampi compared with the contralateral 
hippocampi in APP/PS1+IL-1β mice.

The authors conclude that IL-1β upreg
ulation in AD brain may be an attempt 
to stimulate microglia to phagocytose Aβ 
deposits, and thus may have a positive role 
in AD brain. The authors suggest that anti-
inflammatory treatment may suppress the 
ability of IL-1β, and possibly other “good” 
cytokines, to induce clearance of Aβ via 
microglial phagocytosis and should there-
fore be used with caution in AD patients.

Inflammation and neurodegeneration
The potential beneficial effects of inflam-
mation and immune cell activation are 
areas of growing interest in AD research. 
Evidence for Aβ plaque–lowering effects 
have been demonstrated in APP transgenic 
mice overexpressing the cytokine TGF-β 

(6), in APP transgenic mice treated with 
glatiramer acetate and a proteosome-based 
adjuvant (7), in acute experiments in APP/
PS1 mice injected intracranially with LPS 
(1), and in APP transgenic mice treated 
with antiinflammatory drugs (8, 9). Inter-
estingly, chronic LPS treatment resulted 
in increased plaque deposition, suggest-
ing that inflammation may have different 
effects depending on its duration (1). In 
support of a beneficial role for inflamma-
tion in AD, suppression of certain inflam-
matory molecules has been found to worsen 
AD pathogenesis. For example, inhibition 
of complement C3 by overexpression of the 
C3 inhibitor soluble complement receptor–
related protein Y (sCrry) (10) or by genetic 
ablation (i.e., C3-null; author’s unpublished 
observations) in APP transgenic mice led to 
an age-dependent increase in cortical and 
hippocampal plaque burden and neuro-
degeneration. In addition, suppression of 
microglial activation, either by minocycline 
treatment (11) or by CC chemokine recep-

Figure 1
Overexpression of IL-1β activates glial cells and reduces Aβ plaque deposition in a mouse model of AD. In this issue of the JCI, Shaftel and col-
leagues (5) used XAT technology to generate IL-1βXAT transgenic mice and crossbred these mice with APP/PS1 mice, a mouse model used to 
study AD. Intrahippocampal injection of FIV-Cre at 6 months of age locally activated the IL-1β transgene and increased the levels of IL-1β and 
glial fibrillary acid protein (GFAP), indicative of astrocytic activation, as well as Iba-1 and MHC class II, indicative of microglial activation. One 
month later, instead of observing a worsening of AD-like pathogenesis as expected, the authors found that IL-1β overexpression in the APP/
PS1+IL-1β mouse resulted in reduced Aβ plaque deposition and lower insoluble Aβ levels in the injected ipsilateral hippocampus compared with 
the control-injected contralateral hippocampus. Levels of APP and β-secretase, one of the APP-cleaving enzymes responsible for generating 
Aβ, were unchanged, suggesting that Aβ production was not affected. Instead, IL-1β overexpression led to increased microglial activation and 
possibly, as the authors hypothesize, clearance of Aβ deposits by microglial phagocytosis. CA, cornu ammonis; DG, dentate gyrus.
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tor 2 (Ccr2) deficiency (12), in young APP 
transgenic mice resulted in increased cere-
bral Aβ deposition.

However, as was pointed out in an excel-
lent recent review of inflammation in AD 
(3), inflammatory molecules are multi-
functional and, depending on timing and 
context, can produce either pro- or antiin-
flammatory effects. This may be particu-
larly relevant for IL-1β. For example, IL-1β 
gene expression (13) and protein levels (14) 
are elevated in human AD brain tissue. If 
IL-1β were protective, one would expect 
a lowering of Aβ levels and less neurode-
generation. It is possible that the immune 
system becomes overwhelmed with Aβ 
deposition to the point where microglial 
activation by IL-1β is no longer effective. 
Interestingly, a recent report demon-
strated that Aβ deposition and Aβ clear-
ance via passive Aβ immunotherapy were 
unchanged in APP transgenic mice cross-
bred with IL-1 receptor 1 (IL-1R1) knock-
out mice, suggesting that IL-1 signaling 
(e.g., IL-1β binding to IL-1R1) may not 
be required for microglial phagocytosis 
of Aβ plaques, although it is also possible 
that other IL-1 receptors may compensate 
for the lack of IL-1R1 (15). In addition, 
it has been reported that IL-1β has other 
effects in the brain, such as promoting tau 
phosphorylation (16, 17). Neurofibrillary 
tangles, another pathological hallmark of 
AD, are the result of tau hyperphosphory-
lation and paired helical filament forma-
tion inside neurons that cause disruption 
of neuronal function (4). 

It will be important to determine the 
effects of local IL-1β overexpression on 
vascular amyloid level, neuronal pathol-
ogy (including tau phosphorylation), and 
cognition in the mouse model described 
by Shaftel and colleagues (5) as well as how 
these changes and IL-1β elevation affect 
the signaling of other inflammatory pro-
teins. For example, a recent report dem-
onstrated that peripheral administration 
of LPS or TNF-α in adult wild-type mice 
caused elevated levels of proinflammatory 
cytokines (including IL-1β) in brain and 
subsequent loss of dopaminergic neurons 
in the substantia nigra, suggestive of Par-

kinsonian-like pathogenesis (18). Thus, it 
will be important to evaluate the effects of 
immune mediators not only in terms of AD 
pathogenesis, but also for all neurodegen-
erative processes. Furthermore, the stage 
of AD pathogenesis may influence the 
ability of IL-1β overexpression to clear Aβ; 
thus, activating IL-1β in very old APP/PS1 
mice, which the authors plan to investigate, 
should yield important new information 
and help to clarify the role of this impor-
tant cytokine in AD. Finally, it will be inter-
esting to determine the long-term effects of 
overexpressing IL-1β. Specific activation of 
immune cells or inflammatory pathways 
may have potential protective benefits for 
AD, but some caution should be exercised 
to avoid switching the intended effect to 
that of a deleterious immune response 
resulting in cellular damage. The IL-1β 
results reported here (5) provide much food 
for thought and will undoubtedly encour-
age much-needed future investigation into 
a positive role for inflammation in neuro-
degenerative diseases, including AD. The 
IL-1βXAT mouse model provides a valuable 
new tool with which to begin to dissect the 
spatial and temporal contribution of this 
important cytokine in AD.
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