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Hirschsprung’s disease: 
congenital absence of distal 
bowel enteric nervous system
Hirschsprung’s disease (HSCR) is a deadly 
birth defect in which the enteric nervous 
system (ENS) is missing from the end of the 
bowel (1, 2). Because the ENS controls most 
aspects of bowel function (3), even a short 
region of bowel without neurons and glia 
(i.e., aganglionosis) can be fatal. Over the 
past few decades many genetic and nonge-
netic causes of distal bowel aganglionosis 
have been identified, including mutations 
in RET, EDNRB, SOX10, PHOX2B, and 
ZFHX1B (4, 5), but identifiable genetic 
problems do not explain HSCR occurrence 
in many affected children (6). Down syn-
drome also predisposes to HSCR.

The first definitive description of what 
is now called HSCR is attributed to Fred-
erick Ruysch in 1691 (7), but the ancient 
Ayurvedic Sushruta Samhita describes 
“Baddha Gudodaram,” a disorder remark-
ably like HSCR, as early as 2000 BCE (8). 
In 1886, Harald Hirschsprung reported two 
infants with the disorder that now bears his 
name (9, 10). The link between distal bowel 

aganglionosis and the massive proximal 
bowel distension that occurs with HSCR 
was not understood, however, until the pio-
neering studies of Swenson and Bill, Swen-
son et al., Bodian et al., Zuelzer and Wilson, 
and Whitehouse and Kernohan in 1948 and 
1949, which showed that the absence of 
enteric neurons causes tonic contraction 
and functional obstruction (11–15). HSCR 
in a child with Down syndrome was first 
reported in 1956 (16), and increased occur-
rence of HSCR in individuals with Down 
syndrome was recognized in 1963 (17), 
suggesting that one or more genes on chro-
mosome 21 contributes to HSCR etiology.  
Up to 10% of children with HSCR have 
Down syndrome, and 1% to 2% of children 
with Down syndrome have HSCR. Thus, 
Down syndrome increases HSCR risk about  
50- to 100-fold above the general popula-
tion risk (~1:5,000) and is a common under-
lying partially penetrant cause of HSCR (4).

Over the past few decades there have 
been dramatic advances in our understand-
ing of HSCR anatomy, embryology, physi-
ology, and genetics (4, 5, 18). Early studies 
by Yntema and Hammond showed that 

the ENS forms from enteric neural crest–
derived cells (ENCDCs) that originate pri-
marily in the vagal region of the neural tube 
(19). These ENCDCs proliferate vigorously 
as they colonize fetal bowel in a rostral to 
caudal progression, pursuing one of the 
longest migratory routes of any cell popula-
tion during fetal development (Figure 1A).  
ENCDCs then differentiate into diverse neu-
ron and glia subtypes that form a network in 
the bowel wall with about as many neurons 
as the spinal cord and every transmitter in 
the central nervous system (3, 18). Despite 
these advances in our understanding of ENS 
development, the causal link between tri-
somy 21 and increased HSCR incidence has 
remained elusive. Analysis of partial trisomy 
21 phenotypes suggested that an extra copy 
of at least one gene in the interval from 33.5 
to 46.25 Mb increased HSCR risk (20). This 
interval contains 122 known genes, including 
DSCAM, BACE2, COL18A1, and COL6A1. 
A recent SNP association study suggested 
that excess DSCAM may be important for 
HSCR pathogenesis in Down syndrome, 
but excess DSCAM has not been confirmed 
experimentally to cause HSCR-like disease 
in model systems (21).

Unbiased approach to 
identify genes critical for ENS 
development
In this issue, Soret and colleagues took an 
unbiased, forward genetics approach and 
used insertional mutagenesis to identify 
potential regulators of neural crest–derived 
cell (NCC) migration (22). To simplify the 
screening process, Soret et al. randomly 
inserted a tyrosinase (Tyr) minigene, which 
rescues pigment production in NCC- 
derived melanocytes, into albino FVB/N 
mice and then evaluated animals with 
nonuniform pigment patterns. Because 
melanocytes and the ENS are both neural 
crest derivatives, some mice with pigmen-
tation defects were also expected to have 
ENS defects, mimicking the human “neu-
rocristopathy” called Waardenburg-Shah 
syndrome (Waardenburg syndrome type 
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HolTg/Tg mice have delayed colonization of 
fetal bowel by ENCDCs due to reduced 
cell migration, but there was no effect on 
the direction of ENCDC migration, rates 
of neuronal differentiation, proliferation, 
or cell death. In contrast, HolTg/Tg mice had 
a smaller percentage of enteric glia-fated 
ENCDCs (SOX10+, HuC/D–, S100β+) than 
WT mice at E15.5 and a larger percentage 
of undifferentiated ENCDCs (SOX10+, 
HuC/D–, S100β–), suggesting that the muta-
tion slows glial differentiation, an effect 
unlikely to influence bowel colonization, 
which is complete by this time.

ref. 22), TashT (23), and Spot (22). The 
genes identified by this approach would 
have been difficult to predict based on 
known ENS biology and would never have 
been discovered by traditional “knockout” 
approaches, because the affected genes are 
overexpressed in these models of HSCR 
and WS4, and the insertions involve non-
coding regions of the genome.

Holstein homozygote (HolTg/Tg) animals 
exhibit distal colon aganglionosis that is typ-
ical of 80% of human children with HSCR, 
but these animals also have quite extensive 
albinism, unlike typical human HSCR (22). 

4 [WS4]) that is characterized by a combi-
nation of skin or eye pigmentation defects, 
sensorineural hearing loss, and HSCR. 
Known causes of WS4 include inactivating 
mutations in EDNRB, EDN3, and SOX10, 
but these gene defects account for only 
a small percentage of HSCR cases (5% 
EDNRB, 4% SOX10, <1% EDN3), and most 
people with HSCR have normal pigmen-
tation. Surprisingly, the insertional muta-
genesis strategy used by Soret et al. led to 
increased expression of genes adjacent 
to the transgene insertion site and three 
new models of HSCR (Holstein [HolTg], 

Figure 1. Formation of the ENS requires precise regulation of ENCDC proliferation, migration, and differentiation. (A) Schematic representation of the 
mouse bowel at E12.5. Vagal crest–derived ENCDCs (blue cells) migrate to and colonize the fetal bowel, where these ENS precursors differentiate into diverse 
neuron and glia subtypes. Sacral crest–derived ENCDCs also contribute to ENS formation in the hindgut, but to a lesser extent. HSCR is a life-threatening 
birth defect, characterized by a region of distal bowel in which the ENS is missing. (B) Simplified view of factors known to influence ENS development. 
Several genetic and nongenetic risk factors have been identified for this disease; however, the underlying cause of HSCR in many cases is not known. Nonge-
netic factors that cause HSCR-like disease in mice include maternal vitamin A deficiency and in utero exposure to mycophenolate. Several additional med-
icines, nutritional factors, and microorganisms also affect ENS development (27–29). HSCR-associated mutations have been identified in genes encoding 
factors that directly influence ENCDC behavior and phenotypes, including receptors RET and EDNRB, β1 integrin, and transcription factors SOX10, PHOX2B, 
and ZFHX1B. Mutations of these factors result in dysfunctional ENS formation due to alterations in ENCDC survival, proliferation, migration, and/or other 
functions essential for normal innervation of the gut. Interactions between ENCDCs and the extracellular matrix along the migratory route also influence 
ENCDC behavior. In this issue, Soret and colleagues demonstrate that animals with excess collagen VI develop HSCR-like disease due to decreased ENCDC 
migration (22). Moreover, the inhibitory effect of collagen VI on ENCDC migration may partially explain why children with Down syndrome have an increased 
risk of HSCR, since collagen VI genes are on chromosome 21. For more details about ENS development and a more complete view of factors associated with 
HSCR, see refs. 4–6 and 18. SSRI, selective serotonin reuptake inhibitor.



The Journal of Clinical Investigation      C o m m e n t a r y

4 3 2 5jci.org      Volume 125      Number 12      December 2015

challenging in humans, however, because 
HSCR is rarely diagnosed before birth. 
Moreover, ENCDCs migrate through the 
bowel during the first trimester of preg-
nancy, and only 1% to 2% of children with 
Down syndrome have HSCR. Nonethe-
less, this remarkable work provides new 
insight into ENS development, highlight-
ing the need to understand the interaction 
of ENCDCs with the extracellular matrix, 
especially as we consider new cell-based 
therapies to treat enteric neuropathy.
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