High-fat-diet exposure induces IgG accumulation in hypothalamic microglia

CX Yi, MH Tschöp, SC Woods… - Disease models & …, 2012 - journals.biologists.com
Disease models & mechanisms, 2012journals.biologists.com
The mediobasal hypothalamic arcuate nucleus (ARC), with its relatively 'leaky'blood-brain
barrier that allows more circulating molecules to enter the brain, has emerged as a key
sensor of blood-borne signals. In both the ARC and white adipose tissue (WAT),
consumption of a high-fat diet (HFD) rapidly induces infiltration of microglia (ARC) or
macrophages (WAT). Animals with HFD-induced obesity (DIO) and insulin resistance
additionally accumulate B cells in WAT, increasing the local production of pathogenic …
Summary
The mediobasal hypothalamic arcuate nucleus (ARC), with its relatively ‘leaky’ blood-brain barrier that allows more circulating molecules to enter the brain, has emerged as a key sensor of blood-borne signals. In both the ARC and white adipose tissue (WAT), consumption of a high-fat diet (HFD) rapidly induces infiltration of microglia (ARC) or macrophages (WAT). Animals with HFD-induced obesity (DIO) and insulin resistance additionally accumulate B cells in WAT, increasing the local production of pathogenic antibodies. We therefore investigated whether DIO mice or genetically obese ob/ob mice have increased IgG in the ARC, analogous to the recent observations in WAT. Following 16 weeks of exposure to a HFD, wild-type (WT) mice had significantly increased IgG-immunoreactivity (ir) signaling that was specific to the ARC and was exclusively concentrated in microglia. By contrast, IgG-ir of age-matched obese ob/ob mice fed standard chow had ARC IgG levels comparable with those in chow-fed WT control mice. However, following 2 weeks of HFD exposure, ob/ob mice also had a significant increase of IgG-ir in the ARC. In summary, our findings reveal a novel pathophysiological phenomenon, specific for the hypothalamic ARC, that is induced by exposure to a HFD and can be enhanced, but not caused, by genetic obesity.
journals.biologists.com